Analyze Samples in the Classroom, Lab or Field with this Portable Fluorescence Spectrometer
This portable, durable, inexpensive florescence spectrometer has a variety of potential applications, including the following:
- Secondary education, where important STEM topics may not be adequately addressed because spectroscopy instruments are too expensive to purchase and maintain.
- Field research in which technicians are required to transport water or soil samples to a lab for spectroscopy analysis, adding time and complication .
- Remote sensor applications where data collection may be limited due to spectrometer power and durability limitations.
3D Biplane Microscopy
A microscopy system is configured for creating 3D images from individually localized probe molecules. The microscopy system includes a sample stage, an activation light source, a readout light source, a beam splitting device, at least one camera, and a controller. The activation light source activates probes of at least one probe subset of photo-sensitive luminescent probes, and the readout light source causes luminescence light from the activated probes. The beam splitting device splits the luminescence light into at least two paths to create at least two detection planes that correspond to the same or different number of object planes of the sample. The camera detects simultaneously the at least two detection planes, the number of object planes being represented in the camera by the same number of recorded regions of interest. The controller is programmable to combine a signal from the regions of interest into a 3D data.
UMaine Tech IDĀ 2008-20
US Patent NumberĀ 7,772,569 & 7,880,149
Inventors: Joerg Bewersdorf, Manuel F. Juette, Travis Gould, Sam T. Hess
Exclusively licensed to Vutara.